عدد نپر
در ریاضیات عدد
در کنار عدد ۰، عدد ۱، عدد پی (به یونانی: π) و عدد یکه موهومی
از معروفیت خاصی در ریاضی برخوردار است.[۲] علاوه بر تعریف انتزاعی آنها، این پنج عدد نقش مهم و کلیدیی در سرتاسر ریاضیات بازی میکنند. برای مثال میتوان هر پنج عدد را در معادلهٔ مشخصهٔ اویلر[۳] مشاهده کرد.
عدد
یک عدد گنگ است؛ یعنی این عدد، کسری از اعداد صحیح نیست. به علاوه، این عدد یک عدد متعالی است؛ یعنی نمیتواند ریشهٔ هیچ معادلهٔ چند جملهای غیر صفر با ضرایب حقیقی باشد. عدد
تا ۵۰ رقم اعشار مطابق عدد زیر است:
۲٫۷۱۸۲۸۱۸۲۸۴۵۹۰۴۵۲۳۵۳۶۰۲۸۷۴۷۱۳۵۲۶۶۲۴۹۷۷۵۷۲۴۷۰۹۳۶۹۹۹۵...[
اولین اشاره به این عدد، در جدولی در ضمیمهٔ مقالهٔ مربوط به لگاریتم جان نپر در سال ۱۶۱۸ انتشار یافته بود مشاهده میشود.[۵] با این حال، این مقاله توضیحی راجع به این عدد نمیداد بلکه تنها لیستی از لگاریتمهای حساب شده در مبنای این عدد را نشان میداد. به نظر میرسد که این جدول توسط ویلیام اوترد تهیه شدهاست. اما «کشف» این عدد توسط ژاکوب برنولی به انجام رسید، کسی که تلاش میکرد مقدار عبارت زیر را محاسبه کند (که در حقیقت همان e است):
اولین استفاده شناخته شده از این عدد، که آن زمان با b نمایش داده میشد، در مکاتبات بین گوتفرید لایبنیتس و کریستیان هویگنس بین سالهای ۱۶۹۰ تا ۱۶۹۱ مشاهده شدهاست. همچنین برای اولین بار اویلر بین سالهای ۱۷۲۷ تا ۱۷۲۸ شروع به استفاده از e برای نمایش این عدد کرد[۶] و اولین استفاده از آن در مقاله، در مکانیک اویلر در سال ۱۷۳۶ مشاهده میشود. در حالی که سالهای پس از آن نیز عدهای از ریاضی دانان از c برای نمایش این عدد استفاده میکردند، اما e بیشتر مرسوم بود. در نهایت نیز e به عنوان نماد استاندارد این عدد امروزه استفاده میشود.
نماد e [ویرایش]
در اینکه چرا عدد
، با حرف e توسط اویلر نمایش داده شدهاست صحبتهای بسیاری است. برخی
حرف اول کلمه exponential به معنای نمایی میدانند، برخی آن را ابتدای اسم اویلر (به آلمانی: Euler) میدانند. برخی نیز میگویند چون حروف c،b،a و d در ریاضیات تا آن زمان به کررات استفاده شده بود، اولر از حرف e را برای نمایش این عدد استفاده کرد. هر دلیلی داشت، به هر حال امروزه اغلب این عدد را با نام اویلر (به آلمانی: Euler) میشناسند.لازم است ذکر شود که اویلر علاقه زیادی به استفاده از نمادهای ریاضی داشت و ریاضیات امروز علاوه بر عدد
در ارتباط با مواردی مانند
در بحث اعداد مختلط،
در بحث توابع و بسیاری دیگر نمادها مدیون ابداعات اویلر است.کاربردها ]
مساله بهره مرکب
برنولی هنگام مطالعه بر روی مسالهٔ بهره مرکب توانست این عدد را کشف کند.
به عنوان مثال یک حساب را فرض کنید که در آن ۱٫۰۰$ باشد و بهرهٔ آن ۱۰۰٪ در سال است. اگر بهره یک باره در پایان سال محاسبه و پرداخت شود، در پایان سال در حساب ۲٫۰۰$ خواهیم داشت. اما اگر بهره دو بار در سال یعنی شش ماه یک بار به اندازهٔ ۵۰٪ محاسبه شود، مقدار حساب تا پایان سال دو بار در ۱٫۵ ضرب خواهد شد یعنی
. اگر چهار بار این کار صورت گیرد، حساب در پایان سال برابر
میشود و اگر ماهانه محاسبه شود
.برنولی متوجه شد که این سری برای محاسبه در بازههای زمانی کوچکتر و بیشتر به یک عدد ثابت نزدیک میشود. محاسبهٔ هفتگی سود منجر به بدست آوردن...۲٫۶۹۲۵۹۷$ در پایان سال میشود، در حالی که محاسبهٔ روزانه آن با ۲ سنت افزایش به عدد...۲٫۷۱۴۵۶۷$ میرسد. با استفاده از n بازه برای محاسبهٔ سود
در هر بازه، مشاهده میگردد که با افزایش n به سمت اعداد بزرگتر مقدار مانده در حساب در پایان سال به عدد e نزدیکتر میشود، به طوری که اگر محاسبه و پرداخت سود به صورت پیوسته صورت گیرد به عدد...2.7182818$ خواهیم رسید. به طور کلی تر، حسابی با 1$ و سود R+1 با محاسبهٔ پیوستهٔ سود در یک سال به عدد
خواهد رسید.آزمایش برنولی
عدد e در نظریه احتمالات، جایی که به نظر نمیرسد به طور واضح هیچ نرخ رشد نمایی وجود داشته باشد، نیز نقش بسزایی ایفا میکند. برای مثال فرض کنید که قمارباز در حال بازی با یک ماشین اسلات (به انگلیسی: slot machine) است. قمارباز یک از n شانس پیروزی دارد و این بازی را n بار انجام میدهد. داریم برای nهای بزرگ (برای مثال چندین میلیون بازی) احتمال این که قمارباز در تمام بازیها شکست بخورد برابر با
است.این یک مثال از آزمایش برنولی است. هر بار که یک قمارباز بازی میکند یک در میلیون شانس پیروزی دارد. یک میلیون بار بازی کردن را میتوان به وسیله توزیع دوجملهای مدلسازی کرد. پیروزی در k با از این یک میلیون بار برابر است با:
در حالت خاصی که در آن k برابر صفر است، یعنی عدم پیروزی در تمامی بازیها، داریم:
این عدد بسیار به عدد
نزدیک است و حد آن نیز به این عدد نزدیک خواهد شد:مساله پریش
یکی دیگر از کاربردهای e توسط ژاکوب برنولی در کنار پیر ریموند دو مونتمورت الگو:فرانسه این بار هنگام کار کردن بر روی مساله پریش که به اسم مساله تحویل کلاه نیز شناخته میشود، کشف شد.[۷] فرض کنید n نفر به یک مهمانی دعوت شدهاند، هر نفر هنگام ورود کلاهش را به پیشخدمت میدهد و او نیز آنها را در n جعبه که هر کدام به نام یکی از مهمانها نام گزاری شدهاست، میگذارد. اما پیشخدمت هویت مهمانها را نمیداند پس او هر کلاه را به صورت تصادفی در یکی از جعبهها میگذارد. مساله دو مونتمورت این است که احتمال اینکه هیچکدام از کلاهها داخل جعبهٔ خودشان قرار نگرفته باشند چقدر است. پاسخ اینگونهاست:
با زیاد شدن تعداد مهمانها و میل کردن n به سمت بینهایت مقدار
به سمت
میل خواهد کرد. به علاوه، تعداد حالاتی که کلاهها در جعبههای میتوانند قرار بگیرند به طوری که هیچ کلاهی در سرجای خودش نباشد برابر
است با که باید به نزدیک ترین عدد صحیح گرد شود.[۸]مجانبها عدد e در بحث مجانبها و روند صعودی توابع نیز نقش خاصی بازی میکند. برای مثال این عدد همراه با عدد پی (به یونانی: π) در تقریب استرلینگ برای تابع فاکتوریل دیده میشود. [۹][۱۰][۱۱][۱۲][۱۳]
نتیجهٔ مسقیم این معادله به حد زیر برای به دست آوردن عدد e منجر میشود.
e در ریاضیات [ویرایش]
انگیزهٔ اصلی کشف عدد e، بخصوص در ریاضیات، حل مشتقها و انتگرالها شامل توابع نمایی و لگاریتم بودهاست.[۱۴] مشتق تابع عمومی نمایی
برابر است با حد عبارت زیر:حد قسمت راست از متغیر x مستقل است و فقط به مقدار a مرتبط است. وقتی که پایهٔ تابع نمایی برابر e باشد، مقدار این حد برابر یک میشود. پس e را به صورت نمادین توسط عبارت زیر تعریف میکنند:
بنابراین تابع نمایی با پایهٔ e برای محاسبات حساب دیفرانسیل بسیار مناسب است. انتخاب e به جای اعداد دیگر، به عنوان پایهٔ تابع نمایی مشتق گرفتن از این تابع را سادهتر کردهاست.
انگیزهٔ دیگر برای کشف e انتخاب آن برای مبنای لگاریتم طبیعی بودهاست.[۱۵] مشتق تابع لگاریتم عمومی
برابر است با حد عبارت زیر:که در عبارت آخر تغییر متغیر
را داریم. آخرین حد در این محاسبه باز هم از x مستقل است و تنها به a بستگی دارد. به طوری که اگر a برابر e شود این حد نیز برابر با یک میشود. پس به صورت نمادین داریم:لگاریتم در این مبنای خاص(یعنی e) را لگاریتم طبیعی مینامند و آن را با "ln" نمایش میدهند. این تابع هنگام مشتق گرفتن رفتار مناسبی دارد و حد موجود در مشتق این تابع یک میشود.
پس از طریق دو راه به نتیجهٔ a=e خواهیم رسید. یک راه از طریق برابر بودن مشتق تابع نمایی
با خودش یعنی
. راه دیگر از طریق برابری مشتق تابع لگاریتمی
با
. در هر مورد، ما برای سادگی محاسبات عدد e را انتخاب میکنیم، با این حال هر دو راه ما را به یک e خواهند رساند.تعریفهای جایگزین [ویرایش]
روشهای دیگری نیز برای تعریف e موجود است: یک از آنها حد یک دنباله در بینهایت، دیگری مجموع یک سری نامتناهی است. همچنین تعاریف مختلفی توسط انتگرال نیز برای این عدد موجود است. بعضی از این تعاریف شامل موارد زیر میشود:
۱. عدد e، یک عدد حقیقی مثبت یکتای است؛ به طوری که:
۲. عدد e، یک عدد حقیقی مثبت یکتای است؛ به طوری که:
تعاریف زیر را میتوان از تعاریف اصلی اثبات کرد.
۳. عدد e حد یک دنباله در بی نهایت است:
به صورت مشابه داریم:
۴. عدد e مجموع یک سری نامتناهی است:
در اینجا !n به معنای n فاکتوریل است.
۵. عدد e، یک عدد حقیقی مثبت یکتای است؛ به طوری که:
نظریه اعداد [ویرایش]
عدد e یک عدد گنگ است. اویلر این موضوع را به وسیلهٔ نامتنهاهی شدن بسط کسرهای متوالی ساده، نشان داد.[۱۶] به علاوه عدد e یک عدد متعالی است. این عدد، اولین عددی بود که با وجود این که با هدف ایجاد یک عدد متعالی ساخه نشده بود، متعالی بودنش اثبات شد (در مقایسه با عدد لیوویل). چارلز هرمیت این موضوع را در سال ۱۸۷۳ اثبات کرد.
اعداد مختلط [ویرایش]
تابع نمایی
از طریق بسط تیلور به صورت زیر درخواهد آمد:به این علت که این سری حاوی خاصیتهای مهمی برای تابع
است، مخصوصا هنگامی که x مختلط باشد، از آن برای در فضای اعداد مختلط بسیار استفاده میشود. از این بسط و بسط تیلور توابع سینوس و کسینوس میتوان معادله اویلر را بدست آورد:که برای تمامی xهای مختلط صحیح است، که در مورد خاص x = π برابر معادلهٔ مشخصهٔ اویلر میشود:
همچنین از آن میتوان جواب چندگانهٔ لگاریتم زیر را بدست آورد:
به علاوه، از این معادلهٔ میتوان بسط را بدست آورد:
که به معادله دی موآور معروف است.
معادلهٔنیز به (Cis(x معروف است.
معادلات دیفرانسیل [ویرایش]
تابع
پاسخ عمومی تمامی معادلات دیفرانسیل خطی به صورت زیر است:
به طوری که با جایگذاری آن در معادله دیفرانسیل خواهیم داش:
که ریشههای آن، sهایی است که پاسخهای عمومی معادلهٔ دیفرانسیل اصلی را میسازد.
نحوهٔ نمایش [ویرایش]
ارقام اعشار [ویرایش]
تعداد ارقام اعشار شناخته شدهٔ عدد e به صورت فرایندهای در طول دههٔ اخیر رشد کردهاست. این رشد مدیون بهبود کارایی کامپیوترها و همچنین بهبود الگوریتمهای محاسبهٔ این ارقام بوده است.
بالاخره پروفسور الکساندر جی. لی و شیگرو کندو در ۲۰۱۰ جولای ۵ توانستخ تا یک میلیارد رقم اعشاری عدد نپر را محاسبه کند





![e = \lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}.](https://upload.wikimedia.org/wikipedia/fa/math/9/c/6/9c678d256067a90ef02d482bac3daa8f.png)




بین
تا
برابر ۱ است.












هدفمان جدیت، صداقت و انضباط در کار و عشق ورزیدن به دانش پژوهان است.